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SECTION I |
ll
INTRODUCTION

Fllamentary composite materials arefbeing used more and more in the
construction of flight vehicles due mai#ly to their high strength and
;
stiffness to weight ratios. They are fﬁrmed by embedding fibers in matrix
|
materials and are, therefore, nonhomogdneous and anisotropic. It is not
expected that methods of analysis and Jesign ugsed for structures of homo-
geneous and isotropic materials, wouldgbe adequate for composites.
However, they serve as the necessacy hackground for the new techniques
required for composite materials,

In structural application, streagth is often a characteristic of
interest, For homogeneous and isotropic materials a number of theories
have been formulated from time to time to predict the response of the
material under general state of stress using the material properties
obtained from simple test conditions -~ uniaxiai tension, compression and
shear, These theories have served as the basis for the development of
thelr counterparts for anisotropic materials., The generallzation has
been achieved by two approaches. In one approach, enough arbitrary
paramaters are Introduced in the theory of strength for isotropic mater-
lals g0 that various faillurc modes can be explained, In the second
developmant of the theory proceeds by assuming that the matrix 1s igotropic
plastic material subjected to deformation conatrainia by the stiff fibers.

The aim of this report is to review the available theories of strength
with emphasis on those for anisotropic materilals, Section II is devoted

to theories for isotropic materials while Section 11l deals with theories

of anisotropic material.
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SECTION Il
THEORIES OF STRENGTH FOR ISOTROPIC MATERIALS

An accurate knowledge of strength characteristics of materials plays
a vital role in an efficient design of structures. It enables a designer
to determine the response of the structures under various conditiomns of
loading. Generation of the material properties for the entire spectrum
of loading 1s a very expensive procedure both in time and money. Instead
information obtuained from simple test conditions 1s generalized to more
complex states, and the generalized hypothesis checked for selected load
combinatlons, temperature, etc. Generalizations suggested by various inves-
tigators dating back to Galileo forming the subject matter of this Section

are from References 1 to 7.

1. Galileo (1638)

Subjecting stones to simple temnsile tests, he observed that the strength
depanded upon the cross sectlional area of the bar and was independent of
its length, He concliuded that a fracture would occur when the "absolute
resistance to fracture" (critical stress) was attained. He used this con-
cept to Investigate resistance to fracture of a cantilever beam but placed
the neutral aris at the extreme compression fiber, which prevented him from
obtaining correct results.

2. Coulowmb (1773)

During Coulomb's period, stone was the principal material of construc-
tion, It wae observed that stone specimens under unlaxilal compression
developed cracks which were inclined to the axis of loading. The inclina-
tion of these cracks differed from 45° which is the inclination of the plane

of maximum shearing stress under axial loading., This observation ‘ed

2
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Coulomb to suggest that failure occurrad when the shearving straas ITI on
the failure plane was aqual to the sum of the cohasivae strangth 'o' and
the frictional stress (~u oy) where u 1s the coofficiont of friction aud

on is the normal temsile stress on the failure plave, il.a.,

[t] = ¢ = uoy )
On the basis of the Equation 1, It can be shown that the inclinatiou of
the failure plane is given by

B = 45° - }/2 (2)
where p o= tan ¢ (N
Equation 1 implies that

(1) Compressive strength is greater than the tensile strength but the
predicted ratio of strength is far lags than found in practice;

(11) The faillure plane makes the same angle with the direction of

the greatest principal stress for all states of stress Including the one

corresponding to pure temsion (which 1s not true); i
(111) 1In the case of a three-dimensional stress field, failure is

not affected by the intermediate principal stress.

However, in case of soils of low cohesion, Equation 1 yields reasonably

good results,

3. Rankine, Lame', Clapeyron - Maximum Stress Theory (1858)

It is postulated in thia theory that an element of a stressed body

fails when the maximum principal stress attains a value obtained from a

simple test like a uniaxial tension test, i.e., i
- gl R -2

(g - 02) (oF - 02) (o] - 62) =o (4)

where 01, Ops O3 are the principal stresses and o, is the fallure stress

in a simple test, ; %




HBqustion 4 represents s‘cubic surface spaced symmetrically about the
origin of coordinetese‘;in case tensile and compressive strengths are
different, the origin of coordinates is not symmetrically locsted.
According to this theory if 03 =m0, © 9 ™ 90 03 = g, separatelym fail-
ure is expected. However, simultaneous presence of 0) = 0y = 03 = 0
does not csuse.fnilute ofithe msterial as shown by experiments. It pro-
‘duces a volume change only.
4. Saint Venant ; Msximum Principal Strain Theory (1837

This theory states that a failure (brittle or yielding) occurs under

any state of stress when the maximum strain reaches the critical value

obtained from.simple'tests, i.e.,

°o
€1 = 1 (01 - u(cz + 03)) £ -

where 0y, Ogs 05 are the principal stresses, €; the strain, u is the

Poissons' ratio and E is the modulus of elasticity., Equation 5 yields

Experiments indicate that the material can sustailn much higher loads than

indicated by Equation 7. In spite of its shortcomings, this theory held

sway on the Continent for several years because of the support it received

from St. Venant.

(5)

(6)

)



Obaarving the flow of soft metals in extrusion tests, Tresca stated
that yiélding in a material begins at a point where the maximum shear
stress attains the yileld étress value. In génétal form this criterion

in tqtﬁs of principal‘s;ress, 01» 93 O3 can bg'expressed as

) [(01;03)2“- 002] [(02 - 01)2- 062] ( [: (03 = 0p)2- 6‘61 = 0 (8)
' !

where G: is the yield:stross in tension test.

The Equation 8 represents three sets of parallel planes. Each set
18 normal to one coordinate plane, These planes define a hexagonal prism
in o, g2, and o4 stress. space with its axis making equal angles with the
coordinate axes,

It predicts satisfactorily the response of the metals such as mild
steel under complex states of st;ess. It expects the slip lines to be
inclined at 45° to the major and minor principal stress directions,.

In case of brittle materials which have different yield stresses in
tension and compression, failure planes are different from the planes of

maximum shear.

6. Beltrami - Maximum Strain Energy Theory (1885)

This theory postulates failure in a material when the total strain
energy stored within the material reaches a value obtained from a simple
test.

Strain energy 'U' per unit volume under a general state of stress is

SRS S e T AT e L el




) LN (P S [ 3 [T L o '
5? U = I [0l +oan + 03 B %19 + Uglg 4 0301] (9)
w%i Strain anargy par unit voluma in a simple tonsion test 1s glven by

\*-. 4] 2

3 the axprasaion A

y 2L

\é, By aquating thoeae exprosslouns, Equation 10 1s obtainad.

X a, a Oa 2 g, 2

1\ -’}l ’ i “ ) . \3 - -2-“

(60) * (s5) (90) = 560 (a0 * 9295 *ogor) v 2 (10)
. i

- The theory caunot be used as a criterion for the simple reason that under
‘_'

%j » high hydrostatic pressure a large amount of energy may be stored without

?ﬁ causing fallura,

Mt

X 7. Mohr's Theory of Stremgth (1900)

{_‘,“v

R Mohr devised a graphic representation of stress states and proved

ok that states of stress on all planes intersecting the principal planes are
i represented by points lying Iin the shaded area (Figure 1), He used this
Ry repraesentation of stress states to develop his strength theory. 'By this

i time there was enough evidence to indicate that shear stresses played an

important role in determining the response of the material to the applied
N loading. Accordingly Mohr hypothesized that the plane which carries max-
imum shear stress is the weakest of all planes having the same normal
stress, For exauple, of all the planes having the same normal stress

0D (Figure 1), planes of maximum shear stresses (corresponding to the
point D, and D4 of the stress circle) are the weakest. This theory
indicates that ouly the largest circle - the principal circle -~ of stress
needs to be considered and the criterion becomes independent of 09,

If a sufficient number of principal circles, each related to the

I it M (T
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failure state of the material, are generated, envelopes (Figure 2) of
these cixcles can be drawn and used to predict the tailure state for
any streas condition. The relationship betweean the shear stress 1 and

the normal stress ¢ on the plane of falilure can be expressed as

It} = F(o) | (11)
where F (o), a function of o, is determined experimentally and is sym-
metric about the o-axis,

One of the required chargcteristics of F (o) is that it cannot have 5
a negative root, as this would contradict the fact that materials under
hydrostatic pressure do not deform plastically. Experiments by Von

Karman indicated that for large negative values of o, Mohr's envelope

tends to bend in a direction parallel to the g-axis,
Similarly two braaches of the envelope intersecting at a finite
slope at the positive point of o-axis lead to anomalous results. For 5
this reason, it was held for a long time that F (o) had no physical sig-
nificance as it approached the positive o-axis, ALfons Leon (1935),
however, pointed out that F (o) had a tangible meaning if it intersected

the positive o-axis at a right angle and had a finite radius of curvature, 5 -

Using this concept, 1€ is possible to distinguish between cleavage and
oblique fractures produced in a material under differenc stress states,

The aimplest forum of F (0) 1s a pair of straight lines. As suggested

by Mohr, they can be obtained by drawing outer tangents to the principal

circles of stress corresponding to the fallure states in tension and com~

pression tests., In case of cast iron, the predicted streangth in sghear




I
-
is si;gf which agrees satisfactorily with the experimental value. In ?
the simplified form, F (o), Figure 3, can be written as ;
T = € - o (12) r
where ¢ and u are determined from the intercept which the tangent makes 7?
with the 1 axis and its slope. In this form, it is the same as given ig
by Equation (1). Equation 12 expressed in terms of principal stresses ?
o1 and 05 becomes |
gél- ;é - 1 (13)
t c
where S¢ = %f—ff%%— (14)
5, = i—f——:—i—g—ﬁ (15) |
Equation (13) can also be expressed as ‘f
(ug - 03) + (ol + 03) sin¢ = 2¢€ cosg (16) %i
which 1s similar to Equation (17) used by Guest to describe the test
results on tension-torsion-pressura tubes.
(0 ~03) + (073 +03)C = C (17)

In case tensile and compressive strengths are equal, the angle ¢ is
zexo and Mohr's strength theory reduces to that of Tresca.
8. Distortional Energy Theory

This theory was re~discovered by several investigators before it was
accepted as beiag valid for ductile metala. Noting that the hydrostatic
state of stveegs produces ouly volume changes in the material, it ia pos-

\
tulated that the material under a general state of stress ylelds when

B e s L o LTI ST R E T SR LA
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(1) 1Its energy of distortio. (Maxwell 1956, Huber 1904, Hencky 1924)

or

(i1) The second invariant, J2’ of the stress deviation (Von Mises 1913);
or

(11i) The mean square shear stress (Novozhilov 1952);
or

(iv) The octahedral shear stress (Nadal 1933);
attains a limiting value usually obtained from the gimple tension test.

All these are mathematically the same and lead to tha expression of the

criterion:
- 2 - 2 - 2
b [(ozz oyy) + (czz °xx) + (cxx ny) 1 +
2 2 2 = 2
3(1yz + T, + Txy) o5 (18)

where o's and 1's are the normal and shear stresses at e point and % ie
the tensile yield stress.

In experimental verification, the plastic straln can be distinguished
only when it becomes measurable., This measurad amount of the plastic
strain reflects more the mean squave shear on all planes than the maximun
ghear stress, On this account, the experimentas of Taylor and Quinney
(1931) on copper, aluminum, and mild steel tubes favor Von Misen' criter-
ion (Equation 18) more than Tresca's (T. H. Lin).

9. Pressure Dapendent FPallure Critexrion

The yield condition for isotropic ductile materials is adequately vepr -
sented in the stress space by Tresca's hexagonal or Von Mises' circular
cylinder with its axis directed along the mean hydrostatic stress axia. i
In this failure condition, it is assumed that the materials have equal

yiald stresses in teunsion and compresalon and the yleld surface is convex.
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" However, materials (cast iron, granular materials, concrete, natural

‘rocks, etc) which are pressure sensitive cannot have a yield surface

representation of a cylinder parallel to the hydrostatic axis. In gen-

aral, they do not show sixfold symmetry of equipressure cross section j
for the simple reason tlat yileld stresses of these materials in tension
and in compression are not equal. For most of these materials Mohr's

criterion with tension cut-offs is a reasonable first approximation,

but when the effect of the intermediate principal stress becomes pro- -

nounced, it has to be geaaralizcd.
For idealized materials assuming that cross sections of the yield
surfaces are geometrically similar, the yleld surface could be expressed

as a surface of revolution about the hydrostatic axis. Some of these

generalizations are:
{1) fCircular cone (Nadai), i.e.,

2 " 2
Toet ™ 9 [3 Co Oget ~ Cl] (19)

where Toct and 0,.¢ are octahedral shear and normal stresses and Co & C;

e et s

are the material constants;

(11) Paraboloidal surfaces, i.e.,

(0y *+ 05 + 03) = 3ay + 9ay [(Ul - 02)% + (0g - 03)? + (03 - 01{] (20)
where oy, 02, o3 are the principal stregses and aj, ap are the waterial
congtanty; and

(i1i) Criterion of Prager and Drucker
aJy+ ,’Jz « k (21)

10
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where J; 1is the first invariant of the stress tensor and J2 is the second
invariant of the streass deviation and e« , k are material constants. None
of these criteria, in simple forms or their gemerallizations, account for
effects of temperature, time, environments, etc. No information is
furnished about the behavior of the material subsequent to yielding in
ductile materials or growth of the failure pattern in the brittle omnes,
The latter type of failure is associated with fracture of solids with
almost no accompanying inelastic deformation. A study of these materials
on microscale indicates that their strengths should be many orders more
than obtained in tensile tests. To explain this phenomencn, Griffith
(1921~24) proposed a theory that the energy required for fracture was

not evenly distributed in the brittle solid. Due to the presence of
randomly oriented cracks, high concentration of strésses occurred at
their tips results in the uﬁeven distribution of energy. This theory and
later theoretical and experimental investigations about the formatiom and
propagation of cracks is the subject.matter which appropriately belong

to "Fracture Mechanics" and will not pe discussed in this report.

11
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SECTION IIIX
ANISOTROPIC THEORIES OF STRENGTH

Commonly used anisotropic materials are fibrous composites fabri-
cated by embedding fibers in a sultable matrix material. This imparts
orthotroplc characteristics to the materlal, To extend the theories of

strength of isotropic materials to composite materials,it 1s customary to

treat them either as quasi-homogeneous or as a two-phase mixture of isotropic
matrix subjected to geometric constraints by the fibers. In developing

the theories, enough arbiltrary parameters are introduced so that various
failure modes can be incorporated. In some of the theories gradual tran-

sition from one failure mode to another is assumed. This gives rise to a

smooth failure surface. On the other hand in certain formulations indepen~

dence of failure modes 1s contemplated. These theories are broadly class-

ified as theories with or without independent failu.e modes and are pre-

sented in this Section.

I. Theories with Independent Failure Modes

(1) Jenkins (1920)

Jenkins (References 8 and 9) extended the application of the
maximum stress theory to a planar orthotropic material like wood to predict
its failure. 1In this theory stresses acting on the orthotropic material
are resolved along the material axes (044, 999, wlz) and it is postulated
that the failure will occur when one or &ll of (911» %22» 712) attain the
maximum values X, Y, S obtained by simple loading conditions, i.e., the

failure is precipitated when any one of the following conditions is satis-

fied:
12
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o511 = X
022 = Y (22)
Tyg = S

where X and Y could be tensile or compressive stresses at failure.

(2) Stowell and Liu (1961)

In this hypothesis (Reference 10) three failurc¢ modes are recog-
nized.
(i) Brittle fracture of fibers; !
(11) Yielding of matrix in shear paral;gl to fibers; and !
(11i) Yielding of matrix in tension transverse to the fibers,
The failure of the material occurs when ¢33, 0,9, 0419» normal and shear

stresses along the material axes attain limiting values, ie.e, when

c11 = Xf (23)
g2 = Y (24)
12 ° Sm (25) .

where X¢ is the failure stress of fibers, Yy and S; are the tensile and é
shear strengths of the matrix. :
Kelly and Davis (Reference 1l1) pointed out that the use of the bulk

nroperties of the matrix in Equation 24 and 25 ignored the observed fiber
matrix interaction in composites. It was suggested that Y, and S be
inéreased by factors of 1.15 and 1.5 respectively to incorporate the iater-
action effect. §

Experiments of Jackson and Cratchley (Reference 12) to correlate the

¢ 'veny h and the mode of failure with the 1iber orientation of unidirect~-

ional an . angle ply laminates led them to observe:
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(1) Using experimentally determined values of Y, and 8ps Equations
23 to 25 are quite adequate to predict the behavior of off-axis speci-
mens of unidirectional laminates, particularly when the change in angle
(~/3.5°) in testing is allowed for;

(ii) No strength peak is noticed when the mode of failure changes
from that of shear to the transverse one with the increasing orientation
angle; and

(1i1) Equations 23 - 25 do not describe adequately the performance
of angle ply laminates.

Further studies of the Stowel and Liu criterion were made by Cooper (Ref-
erence 13). Thin sheets, in which tungsten wires were weakly bonded to
the copper matrix, were used to fabricate off-axis coupons. The experi-
mental results were in reasonable agreement with the theory except for
t&o zones of deviations, namely, when the angle of orientation ¢ was:

(a) 0% < ¢ < 10°

(b) 459 < ¢ < 90°

The discrepancy in the case (a) is attributed to the fibers termin-
ating at the free edge being unstressed thereby reducing the effective
width of the specimen, This edge effect diminishes rapidly with increas-
ing ¢ due to the decreasing overall fracture stress and the component of
stress along the fibers.

In the second case (b) contrary to the theory, no increase of strength

was observed., In fact It slowly decreased. The explanation offered is

14
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that it is always possible to find a plane inclined at 45° to the loading
axis that does not cut any of the fibers.

(3) Prager (1969)

The Reference l4 states that the second and the third failure
mechanisms (Equations 24 and 25) representing the failure by plastic flow
of the matrix are not independent of each other, but interact. This
interaction 1s established by assuming the matrix 1s a homogeneous, per-
fectly plastic solid obeying the yield condition and flow rule of Von
Mises subject to the constraint of vanishing rate of extension in the
direction of indefinitely thin reinforcing fibers. These assumptlons
are used to develop a set of equations governing the behavior of unidirec-
tional and angle ply laminates. The stresses acting on the laminates are
the principal ones.

Unidirectional laminates

4 ollF
T (3(l~c) cos28 + (l+c)) (26)
or O = = Ak
J [(1+c) = (1-c) c032632+ 4(1=-c)“sin420 (?7)

wirre oy, Coy = Principal stresses acting on the laminate
ollF « Fiber stress at failure
g - V.o 1 ghesr =<3 of the matrix
and 6 ©agle which oy maxes with the ..ver direction
Using Equations (26 and 27), the ranges of fiber failure and watrix [ail-

ure modes can be determined.

15
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(4) Waddoups (1966)

In the application of St Venant's maximum strain theory to ani-
sotropic materials (Reference 15), it is hypothesized that the failure
is precipitated when any of the strain components associated with mat-
er:al axes attains the limitihg value, 1If Ell’ 522, 512 are the limit-
ing strain values in a planar orthotropic material, the conditons of
failure in teruws of stresses are expressed as

1

22 b, C11 %1
E
. 22
(11) 0y = Pyy * U E 993
11
(141) t, = B,

-

where Pll = ell E11

Paa = €33 By

P12 ™ Y12 6y

and E are the modulil of elasticity of the material.

11* Bapr Gpo
Equations 31, 32, and 33 define longitudinal, transverse, and shear

modes of failure.

(5) Lance and Robinson (1971)

The first attempt to use the maximum shear stress (Tresca) cri-~

(31)

(32)
(33)
(34)
(35)

(36

terion for auisotropic materials was by Hu (Reference 16). In developing

the theory it is assumed that material axes of orthotropy coilncide with

principal stress directions. An extension of this by Wasti (Reference 1

the

7)

takes intc account the effect of the presence of reinforcement, A general

maxinum shear gtress based yield theory, however, ie developed in Reference

18 for a composite material consisting of stiff pavallel ductile fibers

16
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embedded in ductile matrix,

Yielding of the composite ig assumad to occur whan the manimum ahoay
stress on .

(1) Planes parallel to the fibers and acting iu a perpandicular
direction; or

(11) Planes parallel to the fibars aund acting in the sama diraction
as fibers; or

(iii) Planes oriented at 459 to the fiber direction; attains a crit-
ical value of stress assoclated with the failure planes,

In Figure 4, X coincides with the fiber direction, 5. E, n are the

unilt vectors., 7To meat the vequirements of assumptions (i) and (ii),

the components of shear stress on the plane to which n (Figure 4) is

normal and acting in the directions a and t should satisfy the condi-

tions:
(1) Syx Cos ¢ + o0, Sin ¢ = Ka (37)
(11) 1/2 (o,, - Oyy) Sin 2 ¢ + Ogg Cog 2 ¢ = Kt (18)

where Ka and Kt are critical values of shear stress in a and t direc-
tion,
The expressions in Equations 57 and 38 attain .he raximum values when

..l (.j.zx

¢, = tan (ng) (39)
-1 .

4, = 1/2 tam [(ozz - ovy)/?.‘oyz] (40)

o
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I PMguva 8, W 38 novmal undt veator to the plane of fallura, Tha angle

¥ is the angle batwaan of W on 2Y plana and Z=axiu. 1o watiely the
eondition (i),
- \ Bl - q - \] a "
l/2|u“x ay, onty - ginsy “ya Siney ! w Rs (41

whare Ku i tha oxitleal sheav stvaess on planes fnalinad at 45Y o

the X=axia, Tha leoft hand side of Lquation 41 in maxiwmiaad for

~1

R ) (42)

I aase of a thin sheat of qompouite mataerial in a astata of plawe

atreay, riguve 6,

Yga " Typ Y Uy " 0 (43)

The othar componants of stroeas ave

“yy w 1/2 Lull + 022] - 1/2 [ull - 022J Goa 2 0 (44)
w 172 g . i . - :

O x 142 [°11 4 0221 + 1/2 [“11 022] Cos 2 9 (45)

oxy w 1/2 (011 - 022) Sin 2 0 (46)

Critical shear planas corresponding to the atvessas (Lquationa 43
to 46) arae

® «
o, o - 0, 47)

v N -
‘3’& LI 5 -'7;; ‘93

Using tha results of Equatioms 43 to 47, Lquations 37, 34, and 41

n
2

becoma

18

' o . S .
L e b G e ek A

P




- e Lt TR o e S i SO0t B 3 it b ala S itoric o L in SOMA D & i abdenid ol
. e e wmmpE T TETITIY T IUCTYTTIITAT TTIRETTT TLA L ATETR T * ~ ’
T [ TR T TORTE SO TIL RS ANE LA AL ) i F I HCAR L R LECRE T

- i e aiear aRANE— A T REAENERAT Ly o2 Ao PR I SN O A A
[y ~ 0q0) S0 2 0] @ 2 Ka (48)

;i | lugy 8t0% v oy, Coa¥a] = 2 Ke (49)

\ lqll Goudf & 0yy Sin B = 2 Ke (50)

: [y = 99q) Guald] = 2 Ks (51)

? Por uniaxial atvewss Xiaeld Uy Bguationg 43 « 51 bacowe

{ - _ _

g 2 Ma/gin 2 0 (52)

N ; 2 Re/8indo (53)

N | - }

b 2 Ke/Coa?o (54)

l\‘.

A |

@ ) F Ka/Cos2 0 (55)

v |
éf E No intavaction batwaen the shaar modes 1s allowed for in the critcerion,

% 3 (1I)  LTHEORIES WITHOUT INDEPLNDENY FAILURE MODES

§§' | (1) W) (1948)

@? f In meatals, gralus ave randomly oriented. It iwmparts lsotropic

propartias to wmatals on wacroscale. This isotroplc behavior is confined

% to small deforwations. With increasing straine, grains align themselves
bi in preferrad divections, It renders the material anisotropic.

i

1, Hill (Refereucas 19, 20) sugpasted a yleld criterion that allows for
5

t‘,;‘

i

the anlsotropy. Tn the criterion it is assumed that the material poss=-

T e

essas three orthogonal planes of symmetry and there is no Bauschinger

o

affect. It is of the form

ot

=

4 - - 2 - 2 3 - 2

2 .2 2 -
+ 2L T3 + 2M 113 + 2N P 1 (56)

S

==

=
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where I, G, H, L, M, N are the parameters characteristic of the current
state of anlsotropy. If X, Y, Z ave tensile yield stresses and R, T, S
are the yileld strvesses in shear with respect to the axes of anisotropy,

Equation 56 can be expressed as

(i%% * (032) ¢ G- [(52% * PR ooy,
- 57

(G + g gy * O GE ot :'E%“?%’)"ll%a] + g

N
In case of isotropic materials,

g

X = Y = 2w 0,adT = R = § = J% (58)
Equation 57 reduces to Von Mises' criterion. For generalized plane
stress state, Equation 57 becomes

Bt G-z o+ g ooy, (2%2)2 =1 (59)

(2) Marin (1956)

Marin (Reference 21) modified the distortion energy criterion

for orthotropic materials with different strengths in tension and comprese

sion and expressed it as

(0 = 8)% + (oy, ~bB)2 + (v, - c)2 +q [.(oll ~ a) (g,, = bt
(60)
(@y9 = b) (955 = €) + (934 = ©) (03, - a)] a g2

where a, b, c, etc are to be determined experimeutally. TFor plane stress

condition Equation 60 can be expressed as

20
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2 : ¢ -
91 K %19 T 0y v Ky Oy Kyay Bk, (61)
where Kl’ KZ’ K3, and K4 are constants, They can be evaluated from tests
] -
(1) Gy = Xp 99y = 0
(11 o22 = Y o'll =0 (62)
(H11) 947 = X 9y = 0

Substitution of Equations 62 in Equation 61 yields

e0)
Xp - xc T + YT)

K = Z_XCXT -5 (Xcr - T

1 §% (63)
Kp = X% (64)
Ky = X Xpl¥p = Yy (65)
K, = X ¥, (66)

In the formulation of this criterion, it is assumed that the principal

stress directions coincide with the material axes, therefore, there 1is

1o way to account for shear stresses that may be present along the mater-
1l axee,

(3) Stassi D'Alia (1959)

Reference 22 gives the relationship between the stresses and the

strengths of the material as

-2 0,4 O 0,2 X o g T
SIS LI S S (G NS SAD N S
XTX X X X
[ c T T
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In Equation 67 shear strength is not an independent quantity but i1s a
function of XT‘ This criterion assumes thé material to be isotropic
with different properties in tension and compression and, therefore, it
is not valid for application to the compesite materials.

(4) Norris (1962)

Using nine streugth properties, namely three teusile, three
compressive, and three shear strengths, associated with material axes of
the orthotropic material, Norris (Reference 23) suggested an interaction
type relationshlp between stresses and strengths. The failure of the

material would occur if any one of the following equations is satisfied.

g 2 o 2 o [s] T 2
) P - HEE e gh - (68)
2 2 2
o] ¢ ¢ (0]
22 3 22 "33 T23
)+ ) _T+(T; -1 %
e ag . g T

where X, Y, and Z can be tensile or compressive consistent with the

nature of the stresses 011, 022, and 033'

Equations 68 to 70 for the generalized plane stress condition become:

o] 2 0,40 Tqan2

@y By hre . o, (71)
G2

(%) w1 (72)

(, 7112 . 1 (73)

In Reference 25 it is stated that the shear strength S was not determined
but deduced from Equations 71 to 73 by using tension data and the results

made to fit the formulation.

22
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(5) Griffith and Baldwin (1962)

=

Defining o171 = T1» TG99 = Op» Ogq = Gys Tog = O T13

and a set of strain components € in the same fashion,

950 T1p T g 13

stress-strain relations of an anisotropic linearly elastic solid are

expressaed as

1,3 = 1,..6) : (74)
g

= S;yd (i o= 1,6 (75)

Total strain energy UT peér unit volume for orthotropic materials

(Reference 24) is given by
b f"i d ey (76)
€
2 2 £2
/2 (813 0] + 8y 0f + 55305 )+

B120192 * S130, 93 * 83395 95) 4

2 2 2
(?44 oj + 84505 + 8. 0 ) an
The corresponding volumetric strain energy Uv is
3
- v (78)
Uv (ol + o, + 03) 3
where €, = (ol(s11 + 85, * Sy oo, (S, + Sy, * S,y
0y(S1, + S,y + 333))/3: (79)

The distortional energy UD for the orthotropic material can now be written

as

e e e AR ,%

R

E
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TN e

511 + 8

S S G, O
22 + 13 + 23 ] 2 "3 [
5 + =532 8y . (80)

§12+322+313+s33] + =X 3[23 -
e 3 13

511 + 512 + 593 + S33] +
7

2 2 2
844 cg + 85505 + S66 °6

For plane stress condition Equation 80 reduces to

2 2
U _,‘_’_;[S et ekl S R T R X B B
3 1% 2 3 | 522 2

(8t)

o

1% [2 o - 511 + S22 + 513 + 53] + Sgg 02
3 12 5

It is assumed in this hypothesis that the incipient yielding or the

fracture will occur when UD equals a critical amount of available dis-

tortion energy UD . UD is obtained by a single uniaxial test with
c c
known orientation of the principal axis of orthotropy relative to the

loading.

Results of this one parameter theory are shown to be in fair agree-

ment with the experimental data. However, it is suggested by Griffith

and Baldwin that additional tests under more general states of stress are

24

TS SR AR e \
Al kgt Bl L F AVt 2 b Sy i gr sl e e ey s gt il




required before accepting the theory based on the distortional energy.

(6) Azzi and Tsai (1965)

Azzi and Tsai (Reference 25) assume that fiber reinforced com-

posites are transversally isotropic, i.e.,
Z = Y (82)

Using the relation from Equation 82 in Equation 59, the modified form

of Hill's criterion becomes

2 2 2
RN R

Results of tests on off-axis coupons prepared from unidirectional
glass—-epoxy laminates are shown to be in agreement with the predictions
based on Equation 83. |

Later (Reference 41), Equation 83 is generalized to account for diff-
erent tensile and compressive strengths by stating that X and Y should
be consistant wi-h the nature of.stresses 91 and Tooe

(7) Goiaenblat and Kopnov (1965)

Reference 26 marks the first attempt to develop a general strength
theory for anisotroplc material. It lists some basic cequirements which
the theory must fulfill, They are:

(1) It must be capable of predicting the strength of the material
under complex states of stress for which no experimental data 1s availlable;

(1i) Besides having the stress tensor characterizing the stress state,
the expression for strength should incorporate in some way the strength

properties of the material;

25




(iii) It should include transition from one coordinate system to
andther including simple state of stress in any coordinate system;

(iv)' It should have the structure of an invariant formed from
stress tensor and strain tensor components characterizing the strength
properties -of the material; |

(v) The relationships between material constants should be inde-
pendent of the coordinate system;

(vi) It should have a capability to account.for difference in
tensile and compressive strengths which resﬁi;s in shear strength
being dependent upon the sign of the tangential stresses;

(vii) The failure surface is assumed to sstisfy a heuristic prin-
ciple whichrasserts that the growth of strength indices 1s possible
only when the new failure surfaces include the old ones so that there is
no intersection of the surfaces. |

The failure criterion satisfying'the conditions (1) to (vii) can be

written as:

- a B Y
(Fik Oik) * (qunm 0Pq onm) * (Frstlmn Ors otl onm) teegl (84)

Equation 84 reduces to the strength of material formulas o = 1,
8= 1/2and y = 1/3 etc.

Selecting the first two terms of the expansion, the criterion becomes

F 9 * jqurs Opq Ops L1 (LkaPigiTis = 1,...3) (85)

The comment made in Refeprenge 26 is that the final selection of the expres-

sion depends upon 1its being verified by experiments. If the results of

26




experiments require,more terms can be included. The strength tensors

Fik and qurs satisfy the following symmetry conditions:

Fik = Fki;'qurs = qurs; qurg " qusr; qurs = Frqu (86)

Using the symmetry conditlons, and condensing the tenscrs of stress and

strength, Equation 85 can be written as

Foo, + ‘/Fij ooy =1 (1,1 = 1,2...6) ' (87)

If F; and F;j are the parameters of strength in fundawmental coordin-
ates, i.e., a system pertaiuing to the material axes of the orthotropic
body, Equation (87) becomes

o , 0
Flo, + Fij Oy 9y <1 (88)

o
i3

(1) Stress conditions of pure tension and compression along the

where Fg and P are evaluated from test conditions.

material axes, yileld

2
o 1 1 0 1 1
F; = 1/2 (= - == ;Fl1 = 1/4 [ = + == ) (89)
t (XT xc) ' (X'I‘ X
1 1 1 1 2
) ] o
o= 1/2 (__ - =\ .F = 1/4 (== + == (90)
2 ¥, T Y ) v )
1 1 1 1 2
0 - )
FO o= 1/2 (== - .....) . F = 1/4 (.._ 4 == ) (51)
3 ZT ZC 1733 ZT ZC

(11) Stress conditions (Figures 7a and 7b)

+ +
o = T (45) ', g, = = 16(45)

1

o = - 16(45), o, = 16(45)

and similar conditions for other planes yield

27
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0 1 1 1 X 1 1
F, = 1/8 [Ledbze Lol ) + - )2] (92)
12 [ % It ¥ 64s)”  Tess)
Fi; = /8 [<—1—+}1{—>2+ G2 - e L _>2J (93)
Xp X% T % 4¢45) 4 (45)
o 1 1 1 1 1 1
Fag = U8 [T+ 32 + G—+392 - ¢ + D2 (94)
23 [ YT Xc ZT ZC T5(45)+ 15(45)
To evaluate F;Z’ Fis, ng, two tests each have been employed. To remove

any contradiction resulting therefrom, additional conditions required are:

[,.1__4_~A.+_L].Jl I (95)
X v X ¥a T6(45)" T6(45)"

1 1 1 1 ] 1 1

A il I T N (96)
[XT Ly Xe Zc T4(45)" T4(45)"

1 1 1 1 1 1

Ao 1 1] - (97)
[YT Yo % ] 545)T Tss)”

(111) Conditions of pure shear (Figure 8)

T - 06(0)+. and T w 06(0)” etc,

yield
2
P = 1/4 1 (98)
066 [ 06(0)+ ]
P e 1/4 [-mu~£~ ]2 (99)
44 04(0)+
2
. = 1/4 L (100)
55 [05(0)4 1

and FZ, Fg, Fg are zero in fundamental coordinates as
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%ot T %™ %St T %) @ %ot T %) .

All other F's are zero in fundamental coordinates as there is no
coupling hetween shearing stresses and the normal stresses in that coor-
dinate system.

Having computed Fg and sz in the fundamental system, Fi’ Fij in any
other coordinate system can be determined by transformation.

In case of generalized plane stress condition in fundamental eystem,

strength criterion becomes

P o, + F) o, + /F‘il o} + 28], aj0, + ¥, o2 + ¥ ol <1 (101)
Experiments on tubular specimens of fiber glass under biaxial
states of stress were found to yleld satisfactory results (References
26,27).
(8) Ashkenazi (1965)
To formulate a theory of failure of orthotorpic materials,
Ashkenazl (References 28, 29, 30, 31) assumes that
(1) The material is uniform, continuous, compact and anisotropic;
(i1) The factors like time, temperature, humidity, specimen size and
shape, etc., can be ignored:

(114) The strength properties are tensorial in chavacter and can be

represented by a tensor of the fourth orxder, i.e.,

- 2 3 4
Akop “}1 %k “8o%Sp *tkop (102)
where (1', 4, k', k, o', o, P'y P = 1,...3) (103)

in cariosian coordinates; and (iv) it ls postulated that
]
oikop

aikop (104)
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where cikop is the strength characteristic of the material.

On the basis of these assumptions, the author derives expressions to
determine the normal and shear stresses which the orthotropic material can
sustadn in any arbitrary direction. These expressions in the case of a

plane problem reduces to

1 - Cos'a 4 1 _ 1 2 2 o Sin%e =
s T + (=73 % Y) Sin¢a Cos<y g (103)
b X
_l - COS2 20 + 4 Sinza Coszu (106)
T s 45

b 5

vhere
O Tb = normal and shear atresses in x, y' coordinate system

making an angle @ with the material axes,

X , 8 » pormal and sheay strength obtained from a coupon cut at
45° to the material axes,

Equations 104 and 105 can be wricten as

- X
% Codba + b 5ing 2o+ C Sinbg (107)
1
o " sl 2q Sin? 2q (108)
LA
] 84“
when b ow e o A
xéS 4
{109
and C = P

In case a sixth order tenser is used to represent the strength pro-

parties of thae material, Equation 106 becomes

¢
(2]

[ 3 o = .
b Coaba + bo gind 2a 4 C Sinda
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\ X
where ¢ = v

and bo ) “%**-
X

Lo (110)
8
Experimental results appeav to agrac with the caleulated valuesa using
Equation 106, The use of BEquatlon 109 instead of Equatioun 106 doea wot
yield any more satisfactory results,
The Equations 106 and 107 are applicable only if g, ov TL\ alous 1s

acting on the element of the material. For complex statos of atreas,

Ashkenazi considers the possibility of using Von Mises' plasticity fung=

tion of the form

J2 = Fikop Ok oop = constant (111)

which represents a surface in stress space,

For the plane stress state, Equation 111 becowes

[¢) o T
11,2 22,2, 12.2 . - .
)7+ (7)Y )T ¥ 2l 9y 9y, 1 (114)

In case the stress state is given by
X45

g = O @ T T ——

11 22 12 2 (113)

the value of F12 evaluated from Equation 112 is

4 1 1 1]
2F = [PV, S, — -— -—— — — (l l 4‘)
12 [(Xas)z 2 ) 32

Usiug kquation 1l4, Equation 112 ran be written as

11,2 %22 . ("12)? 1 1
A2 N o e S S
x*) X v g
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Por highly antsvivopie watevial  the unnondtvained valua of F&Q gives yluse
o disvontinuouy vurve For off-axis properties at eevtain angles,

Bquation 108 doss wat appear to hava thia dvawback, For a waaX aniaoevople
waterial, an algebraie aquation of second degraee of the form of Bquation
110 o Bquation 119 van adequately deagvibe the bhehavior undex complex
gtates of atvesan, 1n casa tha fallupe aurfaces have cerveain povtionw

which ave quitvavae, the gecond degrea aquations ara wot autfictent, A\
Loukth ovdar polynombal can be usud with advantage and Askenaal sugpeata

the fourth ordav polynonial of thae fovm

X
B 3 W
N 0f u a,, s
:“L}‘\ ,,,3.& l‘l ‘! ‘2 A"_‘J“LJ - ‘?"l‘ w \"‘"l' - HW‘L Al ]
[ x Ty NN X \ 9 YTy
LI I Tq. oL al
+ 2 M-—J}a“l&! [“ 11422 (.i. + ,\1-'.) ¢ .,J'L + “-\2‘2\ -

(1)

- 0 ' . 2 . 2 .

(Ull 022 ‘l2) Lull “22 (A w) + A u11 + 022] 4
. - P . - g @ Py . 2

Playy 99y via) (vt 9g0) 0y *0yy Ty 0 o) 0

whan A, u, and p are to ba datermived axparimentally for thrae bilaxial
atraas astataa.
Eguation 116 includas Kquations 106 and 107 as particular cases,

(9) Malweister (1965)

The ultimate resistance of wmaterials can be determined possibly
by using atrvesses, straius or the enargy axpeudad to raach the faillurae
gtatas, Malmailster (Rafevance 32) bases tha fallure critarion on the atresa
statas and postulates tha faillure to occur when the astvess path reprasentod

by tha ray from tha ovigin of coovdinatas of stress space terwminataes on the
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failuve surface given by

&wa Oﬁﬂ + haavé “ma OYﬁ v e e ow ] (117)

whavea F«ﬂ' Eﬂﬂvﬁ' Qua.ara the atvangth tonsors of saecond, fourth and

hWighar ovrder,

In caae of plana stress conditions, Equation 117 with two cverms only

gi i can be wrictan as

%{\ 1 g + I Q S 1 o 1 g 2 + I (&) 2 +

v} AR XX wow Xy XY AXRE XX yyyy vy

N y W ? ) 3 } . . ¢ ; w

&. ‘ I“ny vxy b 2(Fxxyy Uxx Oyy Puxxy U 1xy + Fyyyx ny 1xy) 1 (118)

TS

whan X, y ava arbitrarily located cartag+ w toordinates, Equation 118 has

nine coafficiants which nead to be determined from nine tasts, nanely two

LT BT

tentile, two compressive, one shear, and four blaxial tests, Equation 118 )

is cousldavably simplifiod for orthotropic waterial. On condensing the

, o
ST

SR

strangth and strass tensovs Equation 118 trelated to material axes becomes 3

hi\

{“‘ he 0 i 3 2 . 2 0 2

§= ll o, + 12 Gy + FG e + Fip0] ¥ Fyyo5 + F66 9% * 2F12

¥

k{e 0y 0y 1 (119) ;
i .
iy ;
?} , By subjecting the material to two teunsion and two compressive and shear g
b B :
;‘:\ " v v 0 1l n

%ﬁ teats, coefficientas bi’ Yij become :
$

\n\: - N
s 1 1 1

S F. & o= o = £ B :
!le ‘ 1
ﬁ 1 XT XC 11 XTXC |
P‘};’\ : i
5 R TR JU e e \ (120) !
5 2 s y :
%ﬁ‘ 2 YT YC 22 YTYC i
[R5 !
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Similar exprassions caun be obtainad fovr F3' Fb’ l-‘s. ete in case of
three dimensional orthotropic material,

To determine F“ atc,a variety of combinations of 9y and g, can ba
used. Malmeister also suggests the use of other criteria based on

(a) Ultimate stralns; and

(b) Both ultimate straesses and strains,

They are

r, ol -
LGB ca haﬁyd eaB ey$ e 1 and (121)

raB agup + h'mB caf + BaByd ond oyéd + Eu&y& galt eyd + ver 1 Q22)

(10) Hoffman (1967)

To determine the brittle strength of orthotropic material,
Hoffman (Reference 33) proposed that a fracture condition is reached when

Equation 123 is satisfied, i.e.,
- . 2 - 2 - 2
Cilogy = 033)° + Cylogq = 0y9)° + Cyloyy 099)° ¥ G4 0yg

2, + C, 12, + C, 13, = 1 (123)

+ C + G, 1o3 8 13 9 "12

+ C. o

5 922 6 933 7

The constants ci's can be expressed in terms of three tensile strengths,

three compressive strengths and three shear strengths, i.e.,

a
1 1 1
c, = 1/2 [ + -
1 YTYC ZTZC XTXC‘
1 1 1 7
c, = 1/2 [ = + -
2 ‘ ?TAC XTXC YTYC‘
L 1 1]
C. = 1/2 + -
3 [XTXC YTYC ZTZC_ (124)
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& In case of plane stross condition and assuming after Rafavence 25,
he
£ that Yc - ?‘C'Y‘l‘ - n.l..'l‘ @ R, Hquation 123 bacowas
‘\.“ 2 2 ¥ - ’ ? - Y
G, f fmta X N N " o |
\} xTxC YT\C -~ hX‘xC }\T)\C 1l Y.I.\ Q 22 ]
¥ T |
e -l |
5 P (125) |
b (11) Fishav (1967)
'ﬁ» Using the strength criterion of Reference 23, Fishor (Reference :
4 :
% 34) derived expressions to evaluate the strength of ilsotvopic laninates f
| |
2\’ with N laminas(N ~ 3)and inclinad «t aun angle of i;— angla te aach other, i
A :
%, The expresslor is: _
§ )
H g 2 o 2 T 2 0.4 @ .
i | 1 22 12 - _1l 722 = 1 (126) !
. D G R =g |
g ‘
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0w whare
- By (g Yayy o K 3 X (127
k A ALt B2t L2 )
L 2Ly Ty T ) )
P (2)  Ghanta (1961)
¢ |
\ Jhawiu (Rafarenca 35) asgumed that
f‘ (1) Each ply is ganavally ovthotropic and is linearly alastic;
3 (11) GStreas atraln curvas are the sawe undar tansile and compvasasiva
; loads;
) (141) Thea ply La congervative undar loads da, the tensor of elaastic
¢
: congtanta 14 symmetric;
; (1v) The ply exporiences only axtensional deformation under fraa
: chormal loading; and
(v) Tha distortional anergy of each ply rowmains iuvariant undev

votational transformation,
é Following Refereuce 24, tha distortional energy, independant of thermal
'
i T . - . 2 Y 2 .
{ affacta, can ba expraessed ag UD " Kl of + k2 ay + K3 o3 + k4 9 9y
i DK 2 2 (o2
3 + l\s 02 03 + l(ﬁ ay 94 + K7 o‘.Q + KB ug + 1\9 98 (128)
.
A Por simple load conditious,
it
&
:'1 2 2 " '] r2 - 1\2 - 2 - \2 v
%\ UD - KSX L K?.Y . {\3& K71 KBR Kgs (129)
BN
v Using Equation 129 in Equation 128 yields |
r |
|
¢ .i
Iy ;
g
i ;
5 ; ‘
4 36 { ;
it :
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a I 3] 0 " 3] a. g
L : \ 3 4 ! 6
g,0 340 ¢,Q
- ot VR A T A N
Kla —%X Kag vz Rig X% 1 (130)

whara Kl2' RQS’ and K‘3 are the combined strangth coafficlanta which
are choaan in auch a mannar that pradictad aud oxparimental rasults
arve in good agraamant, For a plane straess condition, Bquation 130 assumas

tha fowm

a 9 (4] v : g,.0
0 NP I R U1 € 0 .

Equation 131 doas not distinguish batwean the tensila and compras=
alva bahavior, A diatinction can aasily ba allowed for by permitting X

. » . ’ L4
and Y to assume valuas kT oY AC \T

or YC conslastent with the stresses 9
and Uge '
(13) Bogue (1967) i
In the formulation of a yleld criterion for orthotvopic materials
the assumptions made in Reference 36 ave:
(1) The yield critevion dependa upon the pragent strass state ounly, |
i.e., the stresg or strain history does not affect the yileld strength;
(1i) The yield criterion i{s a scalar quancity, i.e., some scalar !
combination of strasses determines when yleld would occur;
(111) Ounly the devatoric stresses affect the yiald;
(iv) The material has three planes of anlsotropy.

The deviatoric stress components are

k
SRR S Ik =
T o) 3 85y (Ladhk 1,2,3) (132)
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the principal stress direction.

[ T

Truncating the genaval temsor polynoumial after the firvst cuble term and

spacialiging to orthogoual waterials (not necassarily cartesian), the

yiald condition ia written ae

T3

2
%33

2 - 1L 232 . 1 - .3
Aty * 1/2 [le(‘l D SIS S F Y

. 2 ’
L. P, . 3 2 .3
¥ ovgylrg = vy) ] Y oBp Tyt B3ty to8 ot

Ton ) . .
dot [(“.] 1 (133)
whore () + a, + oag) = O (134)

Equation 133 has ten constants which can be evaluated from three tension,

three compression, three shear tests and using the Equation 134.

17 oy - a, = g = ( =

3 0, Equation 133 reduces to Hill's six con-~

stant theory.

(14) Pranklin (1969)
Marin's criterion assumed that the material axes coincided with

Franklin (Reference 37) generalized it to

include shearing stresses on material plames, The expression suggested by

him for plane stress condition is
2 2 ’ 2 =
Kp oy * Rpogp o ¥ K3ogy ¥ K opy ¥ Kgop, b Kooty =1 (139

Constants K's are determined from two tensile, two compressive and one

shear test. Using the experimental values strengths obtalned under simple

loading conditions, Equation 135 becomes,

38




B‘i‘

|

.

N

¢ _

o 2 2 - -

L oo, %22 %% L EoAe o XeTYe

\\S | XX | Yp¥g XX XX, ‘11 Y, 22 3
i

& Ty

b +(=Ht - (136)

If K, = 1, Equation 136 reduces to that by Hoffman (Equation 125). i

The constant K, is a floating constant, Its value may be different

2
in different quandrant of stress space. It can be evaluated from biaxial
stress states,

(15) Tsai and Wu (1971)

i

Assuming that there exists a fallure surface in the stress space,

Tsal and Wu (Reference 38) propose a scalar function

£(%) = Fo, + Fij 0; 04 = 1 (1,3 = 1,2....6) (137)

subject to the constraint

- 2 il =
Fyy Fy F 2 20 (1,3 1,2...6) (138)

N i e L o e A £ e e Attt

In Equation 138 summations over i and j are not implied.

Fi‘and Fij

tests conducted with reference to the coordinate system. Three tension

are related to the strengths of material obtained from

and three compressive tests yield X, YT' ZT’ and XC’ YC’ ZC' The use

TN P

of the results of the tests in Equation 137, yields

e S T
LT .

!

1 1 ,;
trs F, ™ == - == ; F R 3
: 1 Xy Xg 11 X X,
¢ 1 1 1
' F, = == = =% 3 [, & we=— (139)
% 2 Y, Y, 27 Yy,
!
L 1 1 1

F - e e H F - ———— |
‘ 3 Zy Zg 33 T Lz
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Similarly six pure shear tests (three positive, and three negative shear)

are used to obtain

P S § 1
F, v+ 3F - 7 Fry = TH
]}' E 3 1 - --i F - 1
5 RT R 55 RFR- (140)
o 1 1 . 1 '
Fe 7 s Foe SFs-

To evaluate the rest of Fij’ combined stress tests are required, for
example, F12’ To determine F12’ variety of stress combinations can be

used. Some of them are

(1) 0p % 0y = PT;

(i1) 45-degree specimen in tension
g, =0 = g, = El-
2 6 2?

(i1i) 45~degree specimen in compression

= 0 = = Egu-
%1 2 %% 2’

(vi) g, = 0, = -Pg

Plots of PT, PC etc., as a function F12 indicates that not all the tests

are suitable for determining FlZ‘ A small inaccuracy in the value of

U produces a large change in the value of F12' For orthotropic

T° P'1‘" YC
materials, results get highly simplified. The number of independent constants

which are non~zero, are 12, This reduces Equation 137 to
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] " 2
Fpop + Fpop, + Fyoy + Fpyof+ 2F))0y0, + 2F)50) 09 ¢
2 2
Fyg 05 ¥2Fp3 05 04 + Fyyo3 +  (141)

2 2 2
Fuo 04 + Fs505 +* Fepop o g

In case of the generalized plane stress, Equation 141 becomes

2 2 2
Fl 91 +F2 9y +Fll o1 + 2F12 gy 9, + F22 o5 + F66 g 1 (142)

(16) ngpo and Evensen (1971)
I£>is observed in References 39, 40 that the behavior of ortho-
tropic materials aﬁpears to lie between two cases marked by the responses
of the isotropic ductile materials and non-interacting fabric like materials.
To bring about the transition between the two extreme cases, the concept of

interacting factors 1s introduced. Defining the factors as

)
% YZ

: R2
s = R (143)

T
Y XY

a failure criterion

o Rgé)o = 1 (1 = 1,2,3) (144)
is postulated, where ¢ and R&D are
T
g° = (01’02’03’a4’°5’°6) (145)
AL
R W [Ee (1 = 1,2,3) (146)
S |
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In case of plane stress, Equation 144 becomes
2
11 2 X 11 722 22 2 12
3 - o Y)+v1Q + o3 =1 (151)
2
0., C o T
ll 2 Y 11 "22 22,2 12
Yl( MG Y o=l (152)
o
For X « ¢ = 9 and § = —= Yl = 1 and Equations 151 and 152
3
vield identical results,
Figure 9 indicates the affect of interacting factor Y; on the shape
of failure surface for Ty = 0.
43
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SECTION IV
SUMMARY

In Sections II and III various failure theories for isotropic and
anisotropic materisls have been surveyed. The criteria discussed in
Section III are elther distinct failure-mode-dependent or have gradual
failure mode transitions, In the first category, fallure ig precipi-
tated when any one or all of longitudinal, transverse, and shear stresses/
strains (References 10, 15) exceed the limits determined by tests.

Tests (References 12,13) conducted on off-axis coupons of a thin compo-
site material, however, did not indicate any peak when the mode of fail-
ure changed from shear to transverse. It appears to indicate that shear
and transverse fallure modes of composites with stiff fibers are not
independent but interact (Reference 14), If the fibers are stiff but
ductile, the faillure condition of the composite, according to Reference 18,
may be predicted by considering three shear modes of failure,

The second class of criteria are essentlally different expressions of
a8 quadratic form with or without linear terms. They are either generaliza-
tions of Von Mises' criterion (Referaences 19, 20, 21, 22, 23, 24, 25, 33,
34, 35, 37) or have been developed explicitly in quadratic form using the
stress tensor (Referemce 26, 32, 38, 39) or the stress deviation (Reference
36). In the latter case ona cubic term is also included,

1f differences in tensile and compressive strengths are not axplicitly

allowed for, the exprassion for the fallure criterion can be written as

44
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Fij oy 9y 1 (1,3 » 1,2...0) (18))

or

¢" Fom 1 (134)

where oT is the traunspose of a.

In case differences in strength are expressaedly accountad fon, tha cwi-

tarion is
Fj °j + Fij 9y oj 1 (1,7 = 1,2...0) {1%4)
or
ST T
(F° + 0" F)o = 1 (1506)

If F and F are known in one coordinate system, they can be determinad in
any other system by suitable transformation of coordinates. The coefw-
ficients F, F strength parameters of various thaories for tha orthoes
troplc sheet in a state of genaralized plane stress are summariwred in

Table 1.
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Figure 8. Shear Stresses in Fundamental Coordinates
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